[chatbot + AI = 下一代操作模式][42]回顧整個系列 - 開發Chatbot的整個生命周期
![[chatbot + AI = 下一代操作模式][42]回顧 - 開發Chatbot的整個生命周期.jpg](https://d33wubrfki0l68.cloudfront.net/572eed31807b7a8852e3701258a7b81849f17e7e/ab8ca/posts/2018/09/2018-09-01-bot-framework-with-ai-cognitive-service-42-review-post-series-lifecycle-of-chatbot-development/bc204a9c-760e-4616-86de-4b2f3854cb08.jpg)
在上一篇([41]使用Chatdown做Chatbot的UI Prototyping),介紹完了可以用來做Prototyping的UI工具Chatdown之後,這個系列想要介紹的東西都介紹完了。
這篇想要整個重新在review一次整個開發chatbot的開發流程(lifecycle),并且看看再每一個環節這個系列都介紹了什麽可以使用。
在上一篇([41]使用Chatdown做Chatbot的UI Prototyping),介紹完了可以用來做Prototyping的UI工具Chatdown之後,這個系列想要介紹的東西都介紹完了。
這篇想要整個重新在review一次整個開發chatbot的開發流程(lifecycle),并且看看再每一個環節這個系列都介紹了什麽可以使用。
上一篇([30]Confusion Matrix - 用來衡量Classifier Model的方式 Precision和Recall)介紹了Confusion Matrix并且如何使用Precision和Recall這兩個指標來衡量一個Classifier Model的好壞。
這一篇又回到了Custom Vision。在Custom Vision Train好的Model是否能夠拿來離線和或者別的應用例如app裡面使用呢?
Custom Vision有提供匯出Model的功能,這篇將對這個部分介紹。
在上一篇([29]維護Custon Vision Model - 使用歷史查詢記錄做訓練以及如何版控)看完了如何用歷史的搜索結果來持續training Model(模型)并且透過iteration做到Model的測試訓練以及版控,不過上一篇也遺留了一個問題,怎麽看目前的Model是好還是壞?
這裡面就牽扯到了一些數學概念,因此在這一篇將介紹怎麽評判一個Classifier Model是好還是壞,透過Confusion Matrix以及Precision和Recall來瞭解一個Classifier Model的情況。
在上一篇([28]整合Custom Vision到chatbot - 拍照就可以識別價錢)把Custom Vision Training好的Model和Chatbot結合達到了拍照就可以辨識飲料價錢的功能。
這一篇來看看如何透過歷史查詢的圖片持續精進Model,讓他的準確度越來越高,并且透過Iteration做版控避免更糟糕的Model不小心上綫。
在上一篇([27]Custom Vision - 自己的Model自己Train 建立圖片的分類模型)瞭解了如何使用Custom Vision去train一個圖片的classifier模型,并且用了一些測試照片去測試模型的準確度。
是時候把這個功能整合到chatbot裡面了。這一篇將來實作整合進入chatbot的功能并且實現上篇提到的情景 - 透過拍照就可以知道這個飲料是多少錢。
上一篇([26]賦予chatbot OCR的能力 - 加入對發票的功能)介紹完了Computer Vision裡面的OCR服務整合到BotBuilder的程式了之後,來看看另外一個和Vision有關的服務,Custom Vision。
在這一篇將介紹Custom Vision是一個什麽樣的服務,并且如何用Custom Vision來建立一個之後會用到的模型。