ml-classifier


[chatbot + AI = 下一代操作模式][31]Custom Vision Train好的Model匯出離線和給app使用

[chatbot + AI = 下一代操作模式][31]Custom Vision Train好的Model匯出離線和給app使用.jpg
圖片來源:https://pixabay.com/en/books-spine-colors-pastel-1099067/ 

上一篇([30]Confusion Matrix - 用來衡量Classifier Model的方式 Precision和Recall)介紹了Confusion Matrix并且如何使用Precision和Recall這兩個指標來衡量一個Classifier Model的好壞。

這一篇又回到了Custom Vision。在Custom Vision Train好的Model是否能夠拿來離線和或者別的應用例如app裡面使用呢?

Custom Vision有提供匯出Model的功能,這篇將對這個部分介紹。


[chatbot + AI = 下一代操作模式][30]Confusion Matrix - 用來衡量Classifier Model的方式 Precision和Recall

[chatbot + AI = 下一代操作模式][30]Confusion Matrix - 用來衡量Classifier Model的方式 Precision和Recall.jpg
圖片來源:https://pixabay.com/en/books-spine-colors-pastel-1099067/ 

在上一篇([29]維護Custon Vision Model - 使用歷史查詢記錄做訓練以及如何版控)看完了如何用歷史的搜索結果來持續training Model(模型)并且透過iteration做到Model的測試訓練以及版控,不過上一篇也遺留了一個問題,怎麽看目前的Model是好還是壞?

這裡面就牽扯到了一些數學概念,因此在這一篇將介紹怎麽評判一個Classifier Model是好還是壞,透過Confusion Matrix以及Precision和Recall來瞭解一個Classifier Model的情況。